Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.784
1.
Pediatr Rheumatol Online J ; 22(1): 51, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724970

BACKGROUND: Juvenile Idiopathic Arthritis (JIA) is a condition that occurs when individuals under the age of 16 develop arthritis that lasts for more than six weeks, and the cause is unknown. The development of JIA may be linked to serum metabolites. Nevertheless, the association between JIA pathogenesis and serum metabolites is unclear, and there are discrepancies in the findings across studies. METHODS: In this research, the association between JIA in humans and 486 serum metabolites was assessed using genetic variation data and genome-wide association study. The identification of causal relationships was accomplished through the application of univariate Mendelian randomization (MR) analysis. Various statistical methods, including inverse variance weighted and MR-Egger, were applied to achieve this objective. To ensure that the findings from the MR analysis were trustworthy, a number of assessments were carried out. To ensure the accuracy of the obtained results, a range of techniques were utilised including the Cochran Q test, examination of the MR-Egger intercept, implementation of the leave-one-out strategy, and regression analysis of linkage disequilibrium scores. In order to identify the specific metabolic pathways associated with JIA, our primary objective was to perform pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes. RESULTS: Two-sample summary data MR analyses and sensitivity analyses showed that five metabolites were significantly causally associated with JIA, including two risk factors-kynurenine (odds ratio [OR]: 16.39, 95% confidence interval [CI]: 2.07-129.63, p = 5.11 × 10- 6) and linolenate (OR: 16.48, 95% CI: 1.32-206.22, p = 0.030)-and three protective factors-3-dehydrocarnitine (OR: 0.32, 95% CI: 0.14-0.72, p = 0.007), levulinate (4-oxovalerate) (OR: 0.40, 95% CI: 0.20-0.80, p = 0.010), and X-14,208 (phenylalanylserine) (OR: 0.68, 95% CI: 0.51-0.92, p = 0.010). Furthermore, seven metabolic pathways, including α-linolenic acid metabolism and pantothenate and CoA biosynthesis, are potentially associated with the onset and progression of JIA. CONCLUSION: Five serum metabolites, including kynurenine and 3-dehydrocarnitine, may be causally associated with JIA. These results provide a theoretical framework for developing effective JIA prevention and screening strategies.


Arthritis, Juvenile , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Arthritis, Juvenile/genetics , Arthritis, Juvenile/blood , Mendelian Randomization Analysis/methods , Child , Polymorphism, Single Nucleotide , Kynurenine/blood , Kynurenine/analogs & derivatives
2.
Genes Genomics ; 2024 May 11.
Article En | MEDLINE | ID: mdl-38733520

BACKGROUND: The apoptosis-resistant pulmonary arterial endothelial cells (PAECs) are known to be major players in the pulmonary remodeling of pulmonary arterial hypertension (PAH) and exhibit an abnormal metabolic profile with mitochondrial dysfunction. Mitochondrial fission has been shown to regulate the apoptosis of several cell types, but this is largely unexplored in the PAECs. OBJECTIVE: The roles of mitochondrial fission control by Dynamin related protein-1 (DRP1) in the development of PAECs apoptosis suppression were investigated in present study and the potential mechanisms behind this were furtherly explored. METHODS: The mitochondrial morphology was investigated in PAECs from PAH rats with the pulmonary plexiform lesions, and the relations of it with DRP1 expression and apoptosis were furtherly identified in apoptosis-resistant PAECs induced by hypoxia. PAECs were isolated from rats with severe PAH and from normal subjects, the apoptotic-resistant PAECs were induced by hypoxia. DRP1 gene knockdown was achieved via DRP1-siRNA, DRP1 and STAT3 phosphorylation were blocked using its inhibitors, respectively. Apoptosis was analyzed by flow cytometry, and mitochondrial morphology was investigated by transmission electron microscope and confocal microscopy. RESULTS: The PAECs isolated from PAH rats with the pulmonary plexiform-like lesions and displayed lower apoptotic rate with increased DRP1 expression and mitochondrial fragmentation. In addition, similar observations were achieved in apoptosis-resistant PAECs induced by hypoxia. Targeting DRP1 using siRNA and pharmacologic blockade prevented the mitochondrial fission and subsequent apoptotic resistance in PAECs under hypoxia. Mechanistically, STAT3 phosphorylation at Tyr705 was shown to be activated in both PAH and hypoxia-treated PAECs, leading to the regulation of DRP1 expression. Of importance, targeting STAT3Tyr705 phosphorylation prevented DRP1 disruption on apoptosis in PAECs under hypoxia. CONCLUSIONS: These data indicated that STAT3 phosphorylation at Tyr705 impacted DRP1-controlled mitochondrial fission during the development of apoptosis-resistance in PAECs, suggesting mitochondrial dynamics may represent a therapeutic target for PAH.

3.
Heliyon ; 10(9): e29829, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707472

Background: Glioma, a prevalent malignancy of the brain and spinal cord, poses a considerable threat to human health. The association between aberrant sialic acid modification and glioma progression has been suggested, but the precise mechanism is still elusive. ST3GAL4, a sialoglycosyltransferase, is implicated in increased metastatic potential and poor prognosis in various cancers; however, its specific role in glioma requires further elucidation. Methods: We evaluated ST3GAL4 expression levels and their clinical relevance using the TCGA database, and we assessed immune infiltration via the Tumor Immune Evaluation Resource (TIMER) database. In vitro experiments were performed to determine the effects of ST3GAL4 knockdown on glioma cell malignancy, with additional co-culture assays to assess its impact on macrophage phenotype. Results: ST3GAL4 expression was markedly elevated in glioma tissues compared to normal brain tissues, with a strong correlation to glioma patient clinical characteristics. Survival analyses and receiver operating characteristic (ROC) curves suggested that ST3GAL4 is a feasible diagnostic and prognostic biomarker for glioma. Knockdown studies revealed that ST3GAL4 inhibition reduces glioma cell line proliferation, migration, and invasion, while causing G1 phase cell cycle arrest. ST3GAL4 appears to mediate glioma progression through extracellular matrix reorganization and EMT signaling pathway activation, further contributing to M2 macrophage polarization and infiltration within the tumor microenvironment. Conclusion: Our research highlights the critical role of ST3GAL4 in glioma development, positioning it as a promising candidate for diagnostic and therapeutic interventions.

4.
PLoS One ; 19(5): e0302383, 2024.
Article En | MEDLINE | ID: mdl-38713724

Patients infected with herpes zoster might be at risk for Parkinson's disease (PD). However, antiviral drugs may impede viral deoxyribonucleic acid (DNA) synthesis. This study aimed to determine whether the currently observed association between herpes zoster and PD is consistent with previous findings, and whether antiviral drug use is associated with PD. This retrospective cohort study used the Longitudinal Generation Tracking Database. We included patients aged 40 years and above and applied propensity score matching at 1:1 ratio for study comparability. PD risk was evaluated using Cox proportional hazards regression methods. A total of 234,730 people were analyzed. The adjusted hazard ratio (aHR) for PD in patients with herpes zoster was 1.05. Furthermore, the overall incidence of PD was lower in those treated with antiviral drugs than in the untreated ones (3.17 vs. 3.76 per 1,000 person-years); the aHR was 0.84. After stratifying for sex or age, a similar result was observed. In conclusion, herpes zoster may increase the risk of PD, particularly among females, but receiving antiviral treatment reduces the risk by 16%. Therefore, using antiviral drugs may help prevent PD. However, additional research is required to determine the underlying mechanism(s).


Antiviral Agents , Herpes Zoster , Parkinson Disease , Humans , Female , Male , Taiwan/epidemiology , Antiviral Agents/therapeutic use , Parkinson Disease/epidemiology , Parkinson Disease/drug therapy , Middle Aged , Aged , Incidence , Herpes Zoster/epidemiology , Herpes Zoster/drug therapy , Retrospective Studies , Adult , Proportional Hazards Models , Aged, 80 and over , Risk Factors
5.
J Hazard Mater ; 472: 134466, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38718507

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Due to its uncertain pathogenesis, there is currently no treatment available for AD. Increasing evidences have linked cellular senescence to AD, although the mechanism triggering cellular senescence in AD requires further exploration. To investigate the involvement of cellular senescence in AD, we explored the effects of cadmium chloride (CdCl2) exposure, one of the potential environmental risk factors for AD, on neuron senescence in vivo and in vitro. ß-amyloid (Aß) and tubulin-associated protein (tau) pathologies were found to be enhanced by CdCl2 exposure in the in vitro models, while p53/p21/Rb cascade-related neuronal senescence pathways were activated. Conversely, the use of melatonin, a cellular senescence inhibitor, or a cadmium ion chelator suppressed CdCl2-induced neuron senescence, along with the Aß and tau pathologies. Mechanistically, CdCl2 exposure activated the suppressor enhancer Lin-12/Notch 1-like (SEL1L)/HMG-CoA reductase degradation 1 (HRD1)-regulated endoplasmic reticulum-associated degradation (ERAD), which enhanced the ubiquitin degradation of sigma-1 receptor (SigmaR1) by specifically recognizing its K142 site, resulting in the activation of the p53/p21/Rb pathway via the induction of Ca2+ dyshomeostasis and mitochondrial dysfunction. In the in vivo models, the administration of the SigmaR1 agonist ANAVEX2-73 rescues neurobehavioral inhibition and alleviates cellular senescence and AD-like pathology in the brain tissue of CdCl2-exposed mice. Consequently, the present study revealed a novel senescence-associated regulatory route for the SEL1L/HRD1/SigmaR1 axis that affects the pathological progression of CdCl2 exposure-associated AD. CdCl2 exposure activated SEL1L/HRD1-mediated ERAD and promoted the ubiquitinated degradation of SigmaR1, activating p53/p21/Rb pathway-regulated neuronal senescence. The results of the present study suggest that SigmaR1 may function as a neuroprotective biomarker of neuronal senescence, and pharmacological activation of SigmaR1 could be a promising intervention strategy for AD therapy.

6.
Front Microbiol ; 15: 1356161, 2024.
Article En | MEDLINE | ID: mdl-38721598

Skin microorganisms are an important component of host innate immunity and serve as the first line of defense against pathogenic infections. The relative abundance of bacterial species, microbial community assembly, and secretion of specific bacterial metabolites are closely associated with host health. In this study, we investigated the association between the skin microbiome and Ranavirus, and compared the bacterial community assemblage, alpha and beta diversity, and functional predictions of the skin bacterial assemblage in cultured healthy Chinese giant salamanders (Andrias davidianus) and individuals infected with Chinese giant salamander iridovirus (GSIV or ADRV). To achieve this, we employed 16S rRNA amplicon sequencing. The results identified Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota as the dominant phyla in the diseased and healthy groups. Alpha diversity analysis indicated that the skin bacterial community in the diseased group exhibited no significant differences in bacterial species diversity and lower species richness compared to the healthy group. Beta diversity suggested that the two group bacterial community was quite different. Kyoto encyclopedia of genes and genomes (KEGG) pathway analyze and clusters of orthologous groups of proteins (COG) function predictions revealed that changes and variations occurred in the metabolic pathways and function distribution of skin bacterial communities in two groups.

7.
Article En | MEDLINE | ID: mdl-38722324

Anisotropic lattice deformation plays an important role in the quantum mechanics of solid state physics. The possibility of mediating the competition and cooperation among different order parameters by applying in situ strain/stress on quantum materials has led to discoveries of a variety of elasto-quantum effects on emergent phenomena. It has become increasingly critical to have the capability of combining the in situ strain tuning with X-ray techniques, especially those based on synchrotrons, to probe the microscopic elasto-responses of the lattice, spin, charge, and orbital degrees of freedom. Herein, we briefly review the recent studies that embarked on utilizing elasto-X-ray characterizations on representative material systems and demonstrated the emerging opportunities enabled by this method. With that, we further discuss the promising prospect in this rising area of quantum materials research and the bright future of elasto-X-ray techniques. .

8.
Water Res ; 257: 121688, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38723349

A membrane-aerated biofilm-coupled Fe/C supported sludge system (MABR-Fe/C) was constructed to achieve in situ electron production for NO3--N reduction enhancement in different Fe/C loadings (10 g and 200 g). The anoxic environment formed in the MABR-Fe/C promoted a continual Fe2+release of Fe/C in 120 d operation (average Fe2+concentrations is 1.18 and 2.95 mg/L in MABR-Fe/C10 and MABR-Fe/C200, respectively). Metagenomics results suggested that the electrons generated from ongoing Fe2+ oxidation were transferred via the Quinone pool to EC 1.7.5.1 rather than EC 1.9.6.1 to complete the process of NO3--N reduction to NO2--N in Acidovorax, Ottowia, and Polaromonas. In the absence of organic matter, the NO3--N removal in MABR-Fe/C10 and MABR-Fe/C200 increased by 11.99 and 12.52 mg/L, respectively, compared to that in MABR. In the further NO2--N reduction, even if the minimum binding free energy (MBFE) was low, NO2--N in Acidovorax and Dechloromonas preferentially bind the Gln-residues for dissimilatory nitrate reduction (DNR) in the presence of Fe/C. Increasing Fe/C loading (MABR-Fe/C200) caused the formation of different residue binding sites, further enhancing the already dominant DNR. When DNR in MABR-Fe/C200 intensified, the TN in the effluent increased by 3.75 mg/L although the effluent NO3--N concentration was lower than that in MABR-Fe/C10. This study demonstrated a new MABR-Fe/C system for in situ electron generation to enhance biological nitrogen removal and analyzed the NO3--N reduction pathway and metabolic mechanism, thus providing new ideas for nitrogen removal in electron-deficient wastewater.

9.
Chem Asian J ; : e202400211, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709109

The growing demand for wearable electronics has driven the development of flexible thermoelectric (TE) generators which can harvest waste body heat as a renewable power source. Despite carbon nanotube (CNT) yarns have attracted significant attention as a promising candidate for TE materials, challenges still exist in improving their TE efficiency for commercial applications. Herein, we developed high performance CNT/polyaniline (PANI) yarns by engineering the coating of polyaniline emeraldine base (PANIeb), in which CNT yarns were firstly coated by PANIeb layer and further doped by HCl vapor treatment. With the incorporation of PANIeb, σ and S were simultaneously increased to 1796 S cm-1 and 74.8 µV K-1 for CNT/PANIeb 4-2d fibers, respectively. Further HCl vapor treatment induced greatly increased σ to 3194 S cm-1, but maintained be 83 % value before doping, giving rise to the highest power factor of 1224 µW m-1K-2, higher than pristine CNT yarns of 576 µW m-1K-2. Combining outstanding high TE performance and bending durability, a flexible TE generator was constructed to deliver high out power of 187 nW with temperature gradients of about 30 K. These results demonstrate the potential promise of high-performance CNT/PANI-HCl yarns to harvest waste body heat for sustainable power supply.

10.
Article En | MEDLINE | ID: mdl-38709423

PURPOSE: Specialized robotic and surgical tools are increasing the complexity of operating rooms (ORs), requiring elaborate preparation especially when techniques or devices are to be used for the first time. Spatial planning can improve efficiency and identify procedural obstacles ahead of time, but real ORs offer little availability to optimize space utilization. Methods for creating reconstructions of physical setups, i.e., digital twins, are needed to enable immersive spatial planning of such complex environments in virtual reality. METHODS: We present a neural rendering-based method to create immersive digital twins of complex medical environments and devices from casual video capture that enables spatial planning of surgical scenarios. To evaluate our approach we recreate two operating rooms and ten objects through neural reconstruction, then conduct a user study with 21 graduate students carrying out planning tasks in the resulting virtual environment. We analyze task load, presence, perceived utility, plus exploration and interaction behavior compared to low visual complexity versions of the same environments. RESULTS: Results show significantly increased perceived utility and presence using the neural reconstruction-based environments, combined with higher perceived workload and exploratory behavior. There's no significant difference in interactivity. CONCLUSION: We explore the feasibility of using modern reconstruction techniques to create digital twins of complex medical environments and objects. Without requiring expert knowledge or specialized hardware, users can create, explore and interact with objects in virtual environments. Results indicate benefits like high perceived utility while being technically approachable, which may indicate promise of this approach for spatial planning and beyond.

11.
Article En | MEDLINE | ID: mdl-38716694

Phototherapy, represented by photodynamic therapy (PDT) and photothermal therapy (PTT), has great potential in tumor treatment. However, the presence of antioxidant glutathione (GSH) and the heat shock proteins (HSPs) expression caused by high temperature can weaken the effects of PDT and PTT. Here, a multifunctional nanocomplex BT&GA@CL is constructed to realize enhanced synergistic PDT/PTT. Cinnamaldehyde liposomes (CLs) formed by cinnamaldehyde dimer self-assembly were loaded with in gambogic acid (GA) and an aggregation-induced emission molecule BT to obtain BT&GA@CL. As a drug carrier, CL can consume glutathione (GSH) and release drugs responsively. The released BT aggregates can simultaneously act as both a photothermal agent and photosensitizer to achieve PDT and PTT under 660 nm laser irradiation. Specifically, GA as an HSP90 inhibitor can attenuate PTT-induced HSP90 protein expression, thereby weakening the tolerance of tumor cells to high temperatures and enhancing PTT. Such a multifunctional nanocomplex simultaneously modulates the content of GSH and HSP90 in tumor cells, thus enhancing both PDT and PTT, ultimately achieving the goal of efficient combined tumor suppression.

12.
Int Immunopharmacol ; 134: 112185, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701540

Chronic ethanol consumption is a prevalent condition in contemporary society and exacerbates anxiety symptoms in healthy individuals. The activation of microglia, leading to neuroinflammatory responses, may serve as a significant precipitating factor; however, the precise molecular mechanisms underlying this phenomenon remain elusive. In this study, we initially confirmed that chronic ethanol exposure (CEE) induces anxiety-like behaviors in mice through open field test and elevated plus maze test. The cGAS/STING signaling pathway has been confirmed to exhibits a significant association with inflammatory signaling responses in both peripheral and central systems. Western blot analysis confirmed alterations in the cGAS/STING signaling pathway during CEE, including the upregulation of p-TBK1 and p-IRF3 proteins. Moreover, we observed microglial activation in the prefrontal cortex (PFC) of CEE mice, characterized by significant alterations in branching morphology and an increase in cell body size. Additionally, we observed that administration of CEE resulted in mitochondrial dysfunction within the PFC of mice, accompanied by a significant elevation in cytosolic mitochondrial DNA (mtDNA) levels. Furthermore, our findings revealed that the inhibition of STING by H-151 effectively alleviated anxiety-like behavior and suppressed microglial activation induced by CEE. Our study unveiled a significant association between anxiety-like behavior, microglial activation, inflammation, and mitochondria dysfunction during CEE.

13.
Talanta ; 275: 126184, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38703485

Efficient enrichment is crucial for the highly sensitive monitoring of phenylurea herbicides (PUHs) in various environmental waters. In this work, a stable core-shell spherically magnetic polyimide covalent organic framework (COF) was synthesized via a simple template-mediated precipitation polymerization method under mild conditions using tri(4-aminophenyl)amine (TAPA) and 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) as the building units (denoted as Fe3O4@TAPA-BPDA). The Fe3O4@TAPA-BPDA exhibits remarkable adsorption performance for PUHs with an optimized adsorption time of only 10 min. The adsorption of PUHs by Fe3O4@TAPA-BPDA followed the pseudo-second-order kinetic model and the Langmuir model. Furthermore, hydrogen bonding, halogen bonding, hydrophobic interaction, electro donor-acceptor interaction and π-π interactions are identified as the dominant mechanisms contributing to excellent adsorption performance. It was demonstrated that halogen bonds play an important role in the adsorption of substances containing chlorine atoms. The Fe3O4@TAPA-BPDA is easy to operate and highly regenerable. A simple magnetic solid-phase extraction (MSPE) method based on the Fe3O4@TAPA-BPDA was then developed for the rapid extraction of five PUHs in real samples, coupled with high-performance liquid chromatography (HPLC) determination. The analytical method developed has a linear range of 0.5-50 ng/mL, and the limit of detection (LOD) ranges from 0.06 to 0.10 ng/mL. The method exhibits good accuracy with recoveries ranged from 74.5 % to 111.4 %. The analytical method was successfully applied to the highly sensitive detection of PUHs in environmental water samples, which highlighting the potential application of the Fe3O4@TAPA-BPDA in the sample pretreatment.

14.
Bioorg Chem ; 147: 107390, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38691904

Mobocertinib, as a structural analog of the third generation TKI Osimertinib, can selectively act on the EGFRex20 mutation. We have structurally modified Mobocertinib to obtain new EGFR inhibitors. In this paper, we chose Mobocertinib as a lead compound for structural modification to investigate the effect of Mobocertinib derivatives on EGFRT790M mutation. We designed and synthesized 63 Mobocertinib derivatives by structural modification using the structural similarity strategy and the bioelectronic isoarrangement principle. Then, we evaluated the in vitro antitumor activity of the 63 Mobocertinib derivatives and found that the IC50 of compound H-13 against EGFRL858R/T790M mutated H1975 cells was 3.91 µM, and in further kinase activity evaluation, the IC50 of H-13 against EGFRL858R/T790M kinase was 395.2 nM. In addition, the preferred compound H-13 was able to promote apoptosis of H1975 tumor cells and block the proliferation of H1975 cells in the G0/G1 phase; meanwhile, it was able to significantly inhibit the migratory ability of H1975 tumor cells and inhibit the growth of H1975 cells in a time-concentration-dependent manner. In the in vivo anti-tumor activity study, the preferred compound H-13 had no obvious toxicity to normal mice, and the tumor inhibition effect on H1975 cell-loaded nude mice was close to that of Mobocertinib. Finally, molecular dynamics simulations showed that the binding energy between compound H-13 and 3IKA protein was calculated to be -162.417 ± 14.559 kJ/mol. In summary, the preferred compound H-13 can be a potential third-generation EGFR inhibitor.

15.
Ultrasonics ; 141: 107333, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38692213

With the increasing utilization of composite materials due to their superior properties, the need for efficient structural health monitoring techniques rises rapidly to ensure the integrity and reliability of composite structures. Deep learning approaches have great potential applications for Lamb wave-based damage detection. However, it remains challenging to quantitatively detect and characterize damage such as delamination in multi-layered structures. These deep learning architectures still lack a certain degree of physical interpretability. In this study, a convolutional sparse coding-based UNet (CSCUNet) is proposed for ultrasonic Lamb wave-based damage assessment in composite laminates. A low-resolution image is generated using delay-and-sum algorithm based on Lamb waves acquired by transducer array. The encoder-decoder framework in the proposed CSCUNet enables the transformation of low-resolution input image to high-resolution damage image. In addition, the multi-layer convolutional sparse coding block is introduced into encoder of the CSCUNet to improve both performance and interpretability of the model. The proposed method is tested on both numerical and experimental data acquired on the surface of composite specimen. The results demonstrate its effectiveness in identifying the delamination location, size, and shape. The network has powerful feature extraction capability and enhanced interpretability, enabling high-resolution imaging and contour evaluation of composite material damage.

16.
Med Eng Phys ; 127: 104158, 2024 May.
Article En | MEDLINE | ID: mdl-38692761

BACKGROUND: The intervertebral disc exhibits not only strain rate dependence (viscoelasticity), but also significant asymmetry under tensile and compressive loads, which is of great significance for understanding the mechanism of lumbar disc injury under physiological loads. OBJECTIVE: In this study, the strain rate sensitive and tension-compression asymmetry of the intervertebral disc were analyzed by experiments and constitutive equation. METHOD: The Sheep intervertebral disc samples were divided into three groups, in order to test the strain rate sensitive mechanical behavior, and the internal displacement as well as pressure distribution. RESULTS: The tensile stiffness is one order of magnitude smaller than the compression stiffness, and the logarithm of the elastic modulus is approximately linear with the logarithm of the strain rate, showing obvious tension-compression asymmetry and rate-related characteristics. In addition, the sensitivity to the strain rate is the same under these two loading conditions. The stress-strain curves of unloading and loading usually do not coincide, and form a Mullins effect hysteresis loop. The radial displacement distribution is opposite between the anterior and posterior region, which is consistent with the stress distribution. By introducing the damage factor into ZWT constitutive equation, the rate-dependent viscoelastic and weakening behavior of the intervertebral disc can be well described.


Compressive Strength , Intervertebral Disc , Stress, Mechanical , Animals , Intervertebral Disc/physiology , Sheep , Biomechanical Phenomena , Tensile Strength , Weight-Bearing , Elasticity
17.
Front Genet ; 15: 1378907, 2024.
Article En | MEDLINE | ID: mdl-38694875

Introduction: Ovarian cancer (OC) is the deadliest malignancy in gynecology, but the mechanism of its initiation and progression is poorly elucidated. Disulfidptosis is a novel discovered type of regulatory cell death. This study aimed to develop a novel disulfidptosis-related prognostic signature (DRPS) for OC and explore the effects and potential treatment by disulfidptosis-related risk stratification. Methods: The disulfidptosis-related genes were first analyzed in bulk RNA-Seq and a prognostic nomogram was developed and validated by LASSO algorithm and multivariate cox regression. Then we systematically assessed the clinicopathological and mutational characteristics, pathway enrichment analysis, immune cell infiltration, single-cell-level expression, and drug sensitivity according to DRPS. Results: The DRPS was established with 6 genes (MYL6, PDLIM1, ACTN4, FLNB, SLC7A11, and CD2AP) and the corresponding prognostic nomogram was constructed based on the DRPS, FIGO stage, grade, and residual disease. Stratified by the risk score derived from DRPS, patients in high-risk group tended to have worse prognosis, lower level of disulfidptosis, activated oncogenic pathways, inhibitory tumor immune microenvironment, and higher sensitivity to specific drugs including epirubicin, stauroporine, navitoclax, and tamoxifen. Single-cell transcriptomic analysis revealed the expression level of genes in the DRPS significantly varied in different cell types between tumor and normal tissues. The protein-level expression of genes in the DRPS was validated by the immunohistochemical staining analysis. Conclusion: In this study, the DRPS and corresponding prognostic nomogram for OC were developed, which was important for OC prognostic assessment, tumor microenvironment modification, drug sensitivity prediction, and exploration of potential mechanisms in tumor development.

18.
3D Print Addit Manuf ; 11(2): e731-e742, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38689899

Laser powder bed fusion (LPBF) of Al-Cu alloys shows high susceptibility to cracking due to a wide solidification temperature range. In this work, 2024 alloys were manufactured by LPBF at different laser processing parameters. The effect of processing parameters on the densification behavior and mechanical properties of the LPBF-processed 2024 alloys was investigated. The results show that the porosity increases significantly with increasing laser power, while the number of cracks and lack-of-fusion defects increase distinctly with increasing scan speed. The solidification cracking susceptibility of the LPBF-processed 2024 alloys prepared at different processing parameters was analyzed based on a finite element model, which was accurately predicted by theoretical calculations. Dense and crack-free 2024 samples with a high densification of over 98.1% were manufactured at a low laser power of 200 W combined with a low laser scan speed of 100 mm/s. The LPBF-processed 2024 alloys show a high hardness of 110 ± 4 HV0.2, an ultimate tensile strength of 300 ± 15 MPa, and an elongation of ∼3%. This work can serve as reference for obtaining crack-free and high-performance Al-Cu alloys by LPBF.

19.
Front Oncol ; 14: 1295575, 2024.
Article En | MEDLINE | ID: mdl-38690170

Objective: To construct and validate radiomics models for hepatocellular carcinoma (HCC) grade predictions based on contrast-enhanced CT (CECT). Methods: Patients with pathologically confirmed HCC after surgery and underwent CECT at our institution between January 2016 and December 2020 were enrolled and randomly divided into training and validation datasets. With tumor segmentation and feature extraction, radiomic models were constructed using univariate analysis, followed by least absolute shrinkage and selection operator (LASSO) regression. In addition, combined models with clinical factors and radiomics scores (Radscore) were constructed using logistic regression. Finally, all models were evaluated using the receiver operating characteristic (ROC) curve with the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). Results: In total 242 patients were enrolled in this study, of whom 170 and 72 formed the training and validation datasets, respectively. The arterial phase and portal venous phase (AP+VP) radiomics model were evaluated as the best for predicting HCC pathological grade among all the models built in our study (AUC = 0.981 in the training dataset; AUC = 0.842 in the validation dataset) and was used to build a nomogram. Furthermore, the calibration curve and DCA indicated that the AP+VP radiomics model had a satisfactory prediction efficiency. Conclusions: Low- and high-grade HCC can be distinguished with good diagnostic performance using a CECT-based radiomics model.

20.
Am J Clin Exp Urol ; 12(2): 100-109, 2024.
Article En | MEDLINE | ID: mdl-38736618

Cribiform and intraductal carcinoma are patterns of aggressive prostate carcinoma. This study investigated the clinical and pathological features of hereditary prostate cancer. Twenty cases of hereditary prostate cancer from 11 family lines treated at the First Affiliated Hospital of Zhejiang University School of Medicine between 2016-2022 were included to summarize the clinical and pathological features by analyzing clinical information including follow up the survival of the patients and pathological features. Of the 20 hereditary prostate cancer cases, 19 were radical prostate specimens and 1 was a biopsy specimen. The mean age at diagnosis of the patients was 67.55 years and the mean PSA was 15.44 ng/ml, of which 10 cases had PSA ≥ 10 ng/ml and 5 cases had PSA ≥ 20 ng/ml. Of the 19 radical prostate specimens, Gleason cribriform pattern (Gleason grade 4) of PCa is observed in 15 cases (78.95%), and intraductal carcinoma, usually a rare form, is seen in 9 cases (47.3%). Two cases demonstrated pelvic lymph node metastasis, and 7 cases (35%) belonged to high-risk or very high-risk PCa. One case (5.26%) showed partial deletion of expression of RB1, and 13 cases (68.42%) showed deletion of expression of PTEN. Follow-up was 4-90 months, 2 cases had biochemical recurrence and 1 case died from prostate cancer. The mean age at diagnosis of this group of patients with hereditary prostate cancer was 67.55 years, the mean preoperative PSA was 15.44 ng/ml, and their histomorphology was characterized by a high percentage of intraductal carcinoma and cribriform pattern of the prostate.

...